If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6.2t2 + 12t + 32 = 120 Reorder the terms: 32 + 12t + 6.2t2 = 120 Solving 32 + 12t + 6.2t2 = 120 Solving for variable 't'. Reorder the terms: 32 + -120 + 12t + 6.2t2 = 120 + -120 Combine like terms: 32 + -120 = -88 -88 + 12t + 6.2t2 = 120 + -120 Combine like terms: 120 + -120 = 0 -88 + 12t + 6.2t2 = 0 Begin completing the square. Divide all terms by 6.2 the coefficient of the squared term: Divide each side by '6.2'. -14.19354839 + 1.935483871t + t2 = 0 Move the constant term to the right: Add '14.19354839' to each side of the equation. -14.19354839 + 1.935483871t + 14.19354839 + t2 = 0 + 14.19354839 Reorder the terms: -14.19354839 + 14.19354839 + 1.935483871t + t2 = 0 + 14.19354839 Combine like terms: -14.19354839 + 14.19354839 = 0.00000000 0.00000000 + 1.935483871t + t2 = 0 + 14.19354839 1.935483871t + t2 = 0 + 14.19354839 Combine like terms: 0 + 14.19354839 = 14.19354839 1.935483871t + t2 = 14.19354839 The t term is 1.935483871t. Take half its coefficient (0.9677419355). Square it (0.9365244537) and add it to both sides. Add '0.9365244537' to each side of the equation. 1.935483871t + 0.9365244537 + t2 = 14.19354839 + 0.9365244537 Reorder the terms: 0.9365244537 + 1.935483871t + t2 = 14.19354839 + 0.9365244537 Combine like terms: 14.19354839 + 0.9365244537 = 15.1300728437 0.9365244537 + 1.935483871t + t2 = 15.1300728437 Factor a perfect square on the left side: (t + 0.9677419355)(t + 0.9677419355) = 15.1300728437 Calculate the square root of the right side: 3.889739431 Break this problem into two subproblems by setting (t + 0.9677419355) equal to 3.889739431 and -3.889739431.Subproblem 1
t + 0.9677419355 = 3.889739431 Simplifying t + 0.9677419355 = 3.889739431 Reorder the terms: 0.9677419355 + t = 3.889739431 Solving 0.9677419355 + t = 3.889739431 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.9677419355' to each side of the equation. 0.9677419355 + -0.9677419355 + t = 3.889739431 + -0.9677419355 Combine like terms: 0.9677419355 + -0.9677419355 = 0.0000000000 0.0000000000 + t = 3.889739431 + -0.9677419355 t = 3.889739431 + -0.9677419355 Combine like terms: 3.889739431 + -0.9677419355 = 2.9219974955 t = 2.9219974955 Simplifying t = 2.9219974955Subproblem 2
t + 0.9677419355 = -3.889739431 Simplifying t + 0.9677419355 = -3.889739431 Reorder the terms: 0.9677419355 + t = -3.889739431 Solving 0.9677419355 + t = -3.889739431 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-0.9677419355' to each side of the equation. 0.9677419355 + -0.9677419355 + t = -3.889739431 + -0.9677419355 Combine like terms: 0.9677419355 + -0.9677419355 = 0.0000000000 0.0000000000 + t = -3.889739431 + -0.9677419355 t = -3.889739431 + -0.9677419355 Combine like terms: -3.889739431 + -0.9677419355 = -4.8574813665 t = -4.8574813665 Simplifying t = -4.8574813665Solution
The solution to the problem is based on the solutions from the subproblems. t = {2.9219974955, -4.8574813665}
| 3x+9+4x+x=7x+7 | | g(x)=x^4-2x^2 | | sqrt(6x+7)-2=x | | 3x+9+4x+x=6x+6 | | 9x^2-54x+4y^2=-45 | | 3x+9+4x+x=5x+8 | | sqrt(2x+30)-3=x | | -6(x-5)-2=16 | | 3x+9+4x+x=4x+48 | | m^2+18m+80=0 | | 3x+9+4x+x=4x+6 | | 18-44=42 | | 3x+9+4x+x=4x+4 | | 4x^2+72x-640=0 | | 18=6(x+9) | | 3x+9+4x+x=3x+9 | | 3x+9+4x+x=3x+5 | | -(x-3)=2 | | 3x+9+4x+x=3x+4 | | X^2+18x-160=0 | | 3x+9+4x+x=3x+3 | | 3x+9+4x+x=2x+7 | | 3x+9+4x+x=2x+6 | | 12=5(x-1)-3 | | 3x+9+4x+x=2x+5 | | 3x+9+4x+x=2x+4 | | 2x+33=31 | | 3x+9+4x+x=2x+3 | | 3x+9+4x+x=2x+2 | | x+265.33=0.3(705+x) | | 19=71-4x | | 3x+9+4x+x=1x+7 |